The Catalina Sky Survey

Current Operations and Future Capabilities

Eric J. Christensen

A. Boattini, A. R. Gibbs, A. D. Grauer, R. E. Hill, J. A. Johnson, R. A. Kowalski, S. M. Larson, F. C. Shelly

Catalina Sky Survey

- Supported by NASA NEOO Program
- Based at the University of Arizona's Lunar and Planetary Laboratory in Tucson, Arizona
- Leader of the NEO discovery effort since 2004, responsible for ~65% of new discoveries (~46% of all NEO discoveries). Currently discovering NEOs at a rate of ~600/year.

 2 survey telescopes run by a staff of 8 (observers, software developers, engineering support, PI)

Current Facilities

Mt. Bigelow, AZ 0.7-m Schmidt 8.2 sq. deg. FOV V_{lim} ~ 19.5 ~250 NEOs/year

Mt. Lemmon, AZ 1.5-m reflector 1.2 sq. deg. FOV V_{lim} ~ 21.3 ~350 NEOs/year

Retired Facilities

Siding Spring Observatory, Australia 0.5-m Uppsala Schmidt 4.2 sq. deg. FOV $V_{lim} \sim 19.0$ 2004 – 2013 ~50 NEOs/year

Was the only full-time NEO survey located in the Southern Hemisphere

Notable discoveries include Great Comet McNaught (C/2006 P1), rediscovery of Apophis

Upcoming Facilities

Mt. Lemmon, AZ 1.0-m reflector 0.3 sq. deg. FOV 1.0 arcsec/pixel

Operational 2014 – currently in commissioning

Will be primarily used for confirmation and follow-up of newlydiscovered NEOs

Will remove follow-up burden from CSS survey telescopes, increasing available survey time by 10-20%

Increased FOV for both CSS survey telescopes

New 10k x 10k cameras will increase the FOV of both survey telescopes by factors of 4x and 2.4x. Discovery rate expected to increase by ^2-3x

Proposed Facilities

- CLASS: the <u>Catalina LCOGT Asteroid Southern Survey</u>
- 3 x 1.0-m telescopes, 25 sq. deg FOV equivalent
- Flexible operation can survey separately or together
- ~5800 sq. deg. coverage per night to V~20.4, or ~2000 sq. deg. to V~21.6 (assuming 4 visits)
- To be located on Cerro Tololo, Chile

Notable CSS capabilities

- Real-time data processing and reporting
- Visual validation, sensitive to NEOs to ~1 sigma
- Broad sensitivity to both large and small NEOs
 - Good sensitivity to large (H<22) objects
 - Best sensitivity to small objects (H>24)
 - Unique sensitivity to imminent impactors

Survey biases: relative efficiencies

Plots show distribution of H magnitudes of NEO discoveries from 2010 - 2013

Survey biases: relative efficiencies

Plots show distribution of H magnitudes of NEO discoveries from 2010 - 2013

Detecting small imminent impactors

- 2008 TC₃ and 2014 AA were both discovered by CSS (G96) with ~1 day to impact, at V~19-20
- Real-time processing, real-time identification, and real-time reporting, plus same-night follow-up is REQUIRED to characterize impact probabilities, maximize time for physical studies, and accurately predict impact time and location
- Impacts by small ~3-m asteroids represent the most frequent detectable impact events, and provide real-world exercises for dealing with the impact threat. A "fire drill" for NEO impacts.
- ~40% of impactors are visible within ~30 degrees of opposition in the days leading up to impact
- Q: How to enable real-time sensitivity to small impactors?

A. Rich Kowalski

- Embedding humans into the discovery pipeline enables:
 - real-time awareness of interesting objects
 - flexible operation, follow-up scheduling
 - > 99% pure data stream (no false positives)
 - Sensitivity down to ~1 sigma
- CSS's reliance on real-time processing and human validation allowed the discovery of 2008 TC₃ and 2014 AA

Coordination among surveys

- CSS and Pan-STARRS are taking first steps toward inter-survey coordination
- Goal is to ensure both surveys are not looking at the same sky on the same night, and also to constructively combine survey biases to achieve better completeness
- Sky divided into regions that switch between surveys every 3 days

Coordination among surveys

- CSS and Pan-STARRS are taking first steps toward inter-survey coordination
- Goal is to ensure both surveys are not looking at the same sky on the same night, and also to constructively combine survey biases to achieve better completeness
- Sky divided into regions that switch between surveys every 3 days

Ground-based NEO surveys

- Ground-based visible light surveys have advantages and disadvantages relative to space-based IR surveys, which can be measured in terms of:
 - Discovery capability / Scientific output
 - Cost
 - Risk of downtime / failure / loss
 - Available observing hours (daytime / moonlight / weather)
 - Longevity: ability to maintain / upgrade
 - Operational flexibility
- Ground-based visible light surveys and space-based IR surveys are complementary: each enhances and is enhanced by the other
- CSS is studying designs, costs, and capabilities for a dedicated, purpose-built next-generation NEO survey telescope(s)

Questions?

Eric Christensen eric@LPL.arizona.edu

Ground-based NEO survey assets

Survey biases: relative efficiencies

Plots show distribution of H magnitudes of NEO discoveries from 2010 - 2013

Ground-based NEO surveys

- CSS studying cost/engineering/performance issues for dedicated next-gen NEO survey
- All existing and past NEO survey telescopes were built for another mission, and re-purposed for NEO survey
- A ~4m-class system could efficiently survey to V~23-24, covering the sky ~2-4x per lunation
- Could be built and operated for ~10 years, for less than the launch costs of a dedicated space-based IR survey
- Complementary with space-based IR surveys