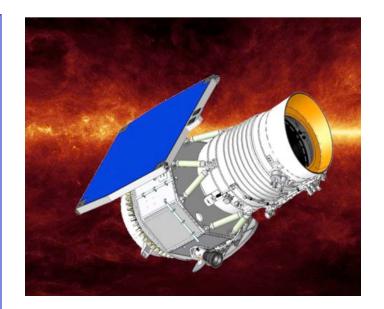
NEOWISE Views of Small Bodies

November 8, 2015

A. K. Mainzer, J. M. Bauer, R.M. Cutri, T. Grav, J. R. Masiero, E. A. Kramer, C.R. Nugent, S. Sonnett, E. L. Wright, and the NEOWISE team.



Mission Overview

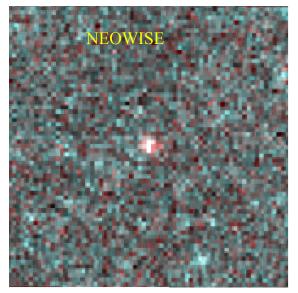
Salient Features

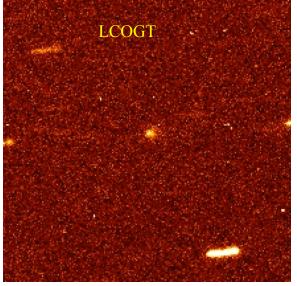
- PI-led (PI: Amy Mainzer, JPL) mission under NEOO Program (Lindley Johnson, Program Exec)
- Uses WISE S/C that was brought out of hibernation in October 2013
- 3.4 and 4.6 µm bands (W1 and W2) at 75K
- Similar observing strategy to WISE/NEOWISE
 - Terminator-following pole-to-pole orbit
 - Surveys entire sky roughly every 6 months
- Science operations: 3 years starting 12/2013

<u>Science</u>

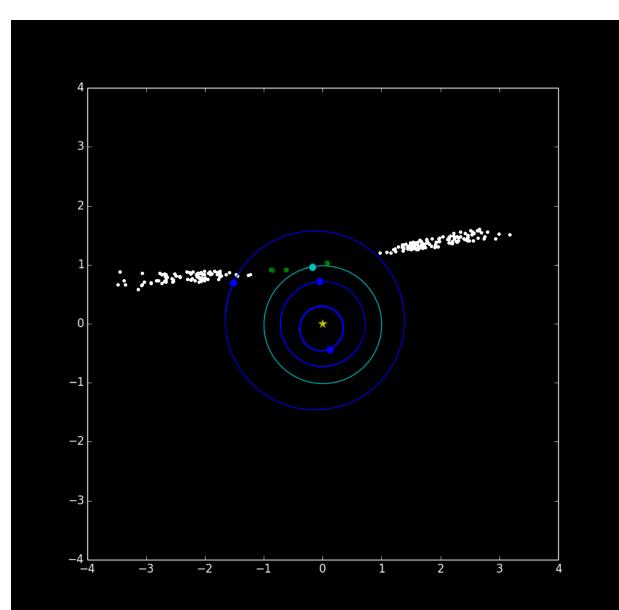
- Expand the NEOWISE survey of Near-Earth Objects (NEOs) at mid-infrared wavelengths using WISE W1 and W2 channels
- Obtain physical characterization (including diameters and albedos) of these NEOs and the thousands of other small bodies detected by NEOWISE

- Observations of ~430 NEOs from fully cryogenic mission (14 Jan 2010 – 5 Aug 2010) used to set constraints on population numbers, size distribution, albedos, orbital elements
- Results: 20,500±3000 near-Earth asteroids (no comets) >100 m;
 - shallow slope size distribution
 - ~25% survey completeness to date
- Roughly 36% of NEOs are dark: p_V<0.1
 Mainzer et al. 2011

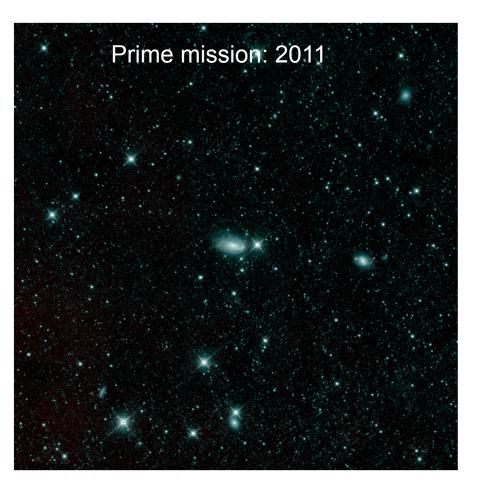


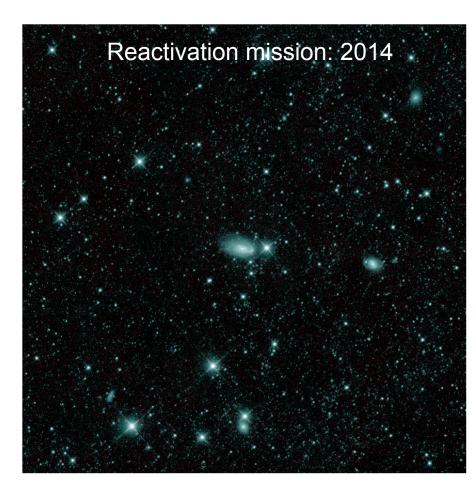

- 25% of NEOs detected by NEOWISE were potentially hazardous (PHAs; MOID<0.05 AU)
- For PHAs, there are 4700±1500 larger than 100m
- About 2x in low-inclination orbits compared to model prediction using Bottke et al. (2002) orbital elements
 - In good agreement with Greenstreet & Gladman (2013)
 - Mainzer et al. 2012

- Since the start of operations, NEOWISE has obtained ~350,000 infrared measurements of 16,569 solar system objects, including 419 NEOs, of which 68 are new discoveries
- Recent NEO discovery 2015 KL157 is a PHA with a MOID of 0.003AU (~1 lunar distance), diameter of 0.58km and V albedo of 0.05
- Fourth comet discovery: **2015 J3 (NEOWISE)** Jupiter family



NEOWISE Year 1

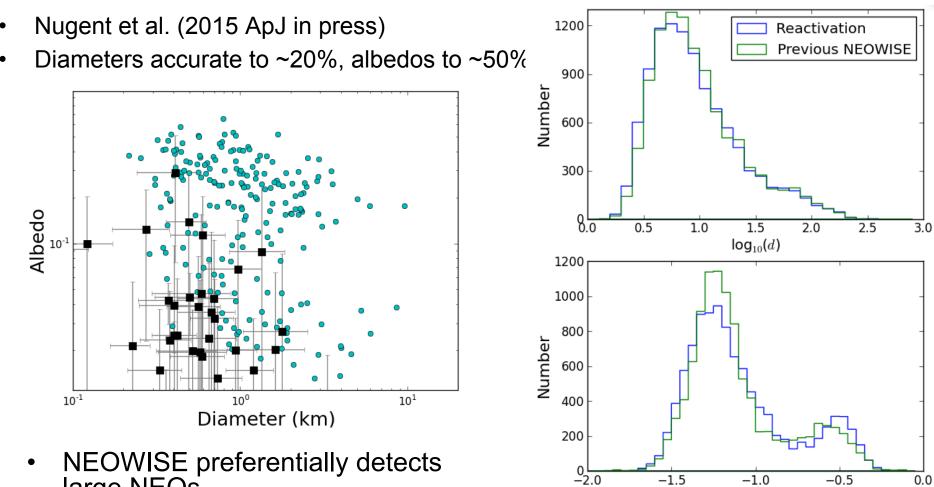

6



Instrument Performance

 Image quality, photometric accuracy, astrometry, sensitivity all unaffected by 32 month hibernation

Single-exposure Source Database Characteristics


		W1	W2		
Sopoitivity (SND-10)	mag	15.0	13.7		
Sensitivity (SNR=10)	mag15.0microJy300mag15.8microJy150mag15.0microJy300	565			
$C_{\text{oppletences}}(>0.00/)$	mag 15.8		14.4		
Completeness (>90%)	microJy	150	300		
D_{a}	mag	15.0	13.5		
Reliability (>95%)	microJy	300	680		
Astometric Accuracy	70 mas (high SNR)				

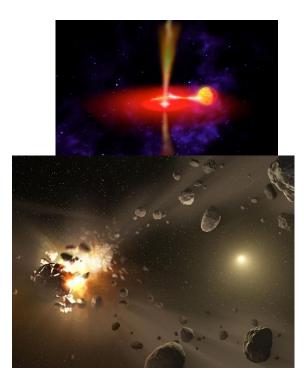
Sensitivity nearly identical to prime mission

Diameters and Albedos for 9,309 Asteroids Detected During First Year

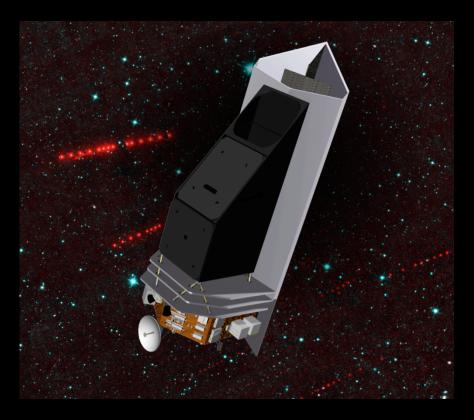
- large NEOs
- NEO discoveries tend to be dark
- Nearly a quarter are PHAs

Diameters and albedos consistent with values from original NEOWISE mission

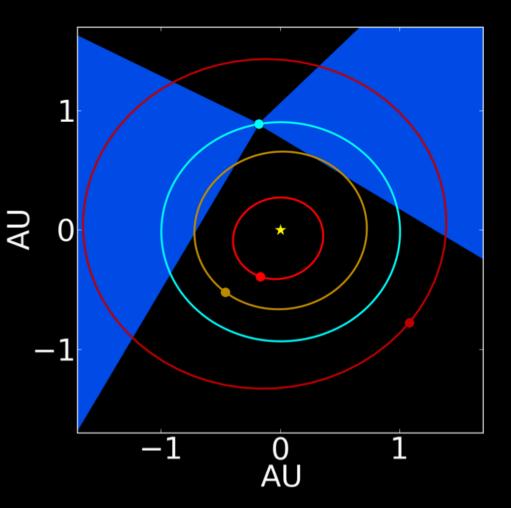
 $\log_{10}(p_V)$


http://wise2.ipac.caltech.edu/docs/release/neowise

- Single-exposure data from the first year of the NEOWISE Reactivation Mission
- 2,497,867 calibrated 3.4 and 4.6 μm FITS images, uncertainty maps and bit masks
- 18,468,575,596 source extractions (positions and W1/ W2 fluxes, ancillary information) from those images
- Data access:
 - Image and source database from the NASA/IPAC Infrared Science Archive (IRSA)
 - Moving Object tracklets from the IAU Minor Planet Center



- Total citation count using NEOWISE data & discoveries: >200 refereed publications
 - Total citation count for WISE >1400 refereed publications
- NEOWISE is a multi-epoch mid-infrared all-sky survey, so its science spans many areas of astrophysics & planetary science:
 - Asteroids
 - Meteoritics
 - Giant planet migration
 - Variable stars
 - Icy bodies in the outer solar system
 - Distance ladder determinations for cosmology
 - Human exploration
 - Supernovae
 - Pulars
 - Exoplanets
 - Black hole accretion disks


NEAR-EARTH OBJECT CAMERA

NEOCam is a dual-channel imager operating in a single step-and-stare survey mode. It includes:

- 50 cm telescope
- Two 16 megapixel HgCdTe focal planes at 4-5.4 and 6-10 μm simultaneously imaged
- Detectors passively cooled to 40K
- Sun-Earth L1 orbit
- First proposed 2005: Category II
- Awarded technology development funding in 2011 Discovery
- Step 2 Discovery (Phase A)

Orbit: Sun-Earth L1 Lagrange Point

- Allows wide instantaneous viewing zones
- Close, constant distance from Earth allows full-frame images to be downlinked
- Thermal environment allows
 passive cooling to 40 K

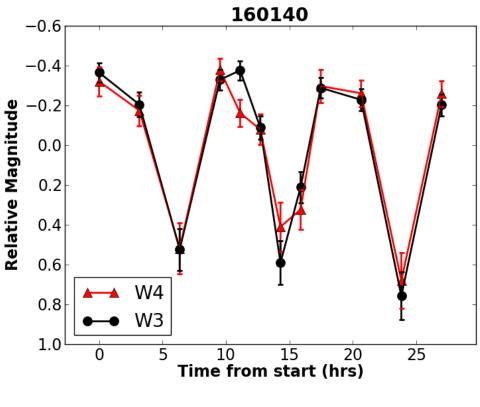
NEOCam Science

Planetary Defense

- Detect millions of small bodies throughout the solar system, including 2/3 of PHAs >140m
- Constrain impact probability for NEOs & comets of all sizes
- Origins & Evolution
 - Population studies: numbers, orbital distribution, physical properties
 - Origins of collisional families, NEOs
 - Identify and characterize rare populations: Earth Trojans, interior NEOs
 - Most comprehensive collection of comet orbit distributions, sizes, & CO/CO₂ abundances

• Finding New Destinations

Find the most accessible targets for future exploration



Example: Possible Binary Asteroids Identified by Large Amplitude Lightcurves

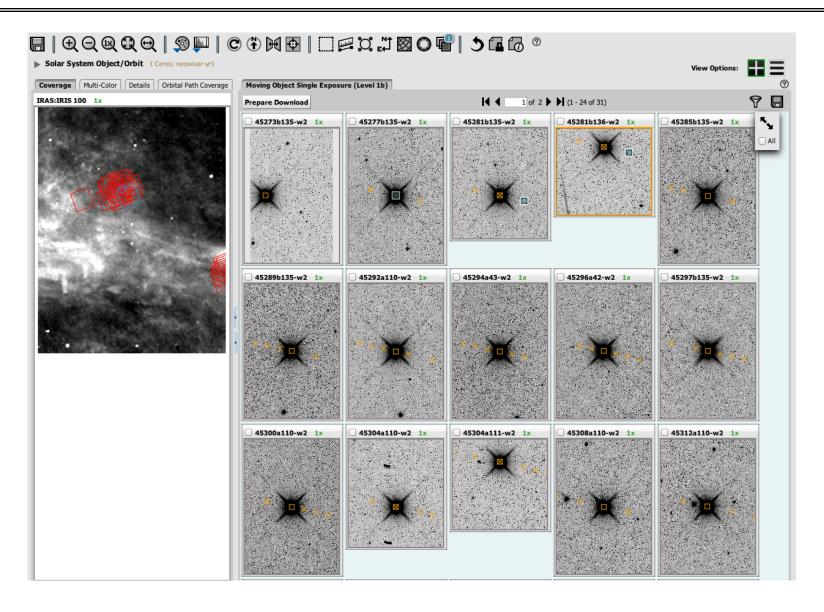
Sonnett et al. (2015)

 Candidates are in need of follow-up to confirm binarity (follow-up underway)

- Close & contact binaries can sometimes be identified by their large brightness variations
- NEOWISE data record observations of asteroids every ~3 hours for ~30 hours
- 29 new binary candidates out of 953 Trojans (13-150 km)
- 48 new binary candidates out of 554 Hildas (4-36 km)

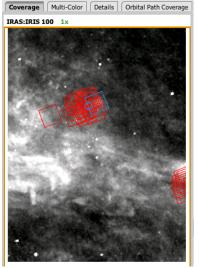
WISE/NEOWISE Image Server: Solar System Object Search

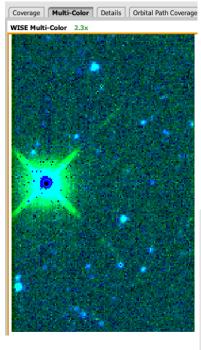
Solar System Object/Orbit		
General Destation Solar System Object/Orbit Advanceu Scan ID/Frame (Single Exposure)	Object Name MPC Input Manual Input Object Name or ID: 1 Ceres Object Name: 1 Ceres, NAIF ID: Object Name: 1 Ceres, NAIF ID:]
<u>Coadd ID (Atlas)</u> <u>WISE Source ID</u>	Observation Begin (UT): Observation End (UT): Enter date range to search, format example: 2010-01-14 15:30:00, or 2010-01-14. Return Image Size (leave blank for full images): 600 Arc Seconds ‡ Image Set: All-Sky (4 band) 3-Band Cryo Post-Cryo (2 band) NEOWISE-R ▶ Obsolete preliminary release data Return the following bands: W1 ♥ W2	
	Search Clear	0


Search for Images that cover the position of Moving Objects at time of observation

- Search by Object Name (Name resolution via JPL Horizons)
- Search using orbital elements with MPC format
- Search using manually input elements

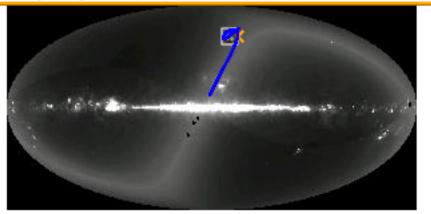
Results of Solar System Search: Grid




Results: left panel

Coverage

Multi-Color


Details

Additional Information				
Name	Value			
a_obj	208.554269			
lec_obj	0.303178			
sun_dist	2.5828			
geo_dist	2.372			
list_ctr	0.3716			
hase	22.3867			
mag	8.58			
rpix1	508.5			
rpix2	508.5			
rval1	208.207849701250			
val2	0.43761912795			
quinox	2000.0			
a1	208.436166318764			

Orbital Path Coverage

Coverage Multi-Color Deta	Orbital Path Coverage
---------------------------	-----------------------

All Sky Image -- DIRBE 60 micron .3x

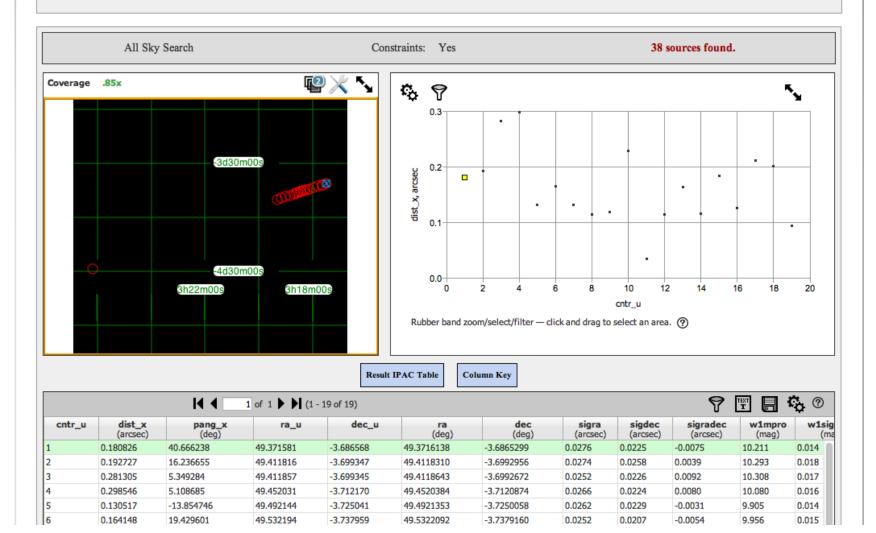
Catalog Query Engine: Solar System Object Search

Run Query Reset

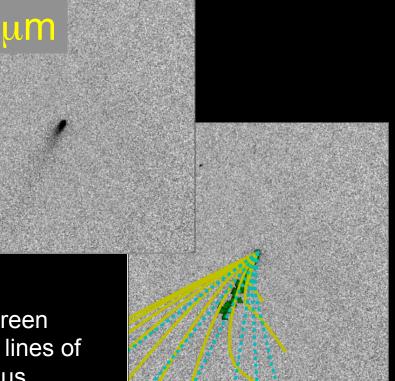
○ Single Object Search ○ Mu	lti-Object Search 🔘 All Sk	<u>cy Search</u> (• <u>Moving (</u>	Dbject Search
	SPATIAL CONSTRA	AINTS		
Object Type: Asteroid ÷	Moving Object Match Rad (0 <match arcsec<="" radius<="180" th=""><th></th><th>(arcsec)</th><th></th></match>		(arcsec)	
Observation Begin/End Time (UT):				
	Example: 2010-01-14 15:30):0 or 2010-0	03-31.	
•Single Object Search	elektra			
	Example: Pallas			
OMPC Line Input				
	Click for details.			
Orbit Element Input				
	Object Designation:			
	Epoch:			
	Semi-major Axis (AU):			(Asteroid Only)
	Perihelion Distance (AU):			(Comet Only)
	Eccentricity:			
	Inclination:			deg ‡
	Argument of Perihelion:			deg ‡
	Ascending Node:			deg ‡
	Mean Anomaly:			deg
	Perihelion Time (JD):			deg \$ ((Comet Only)

Search Source Database for Detections at predicted position of Moving Object at time of observation

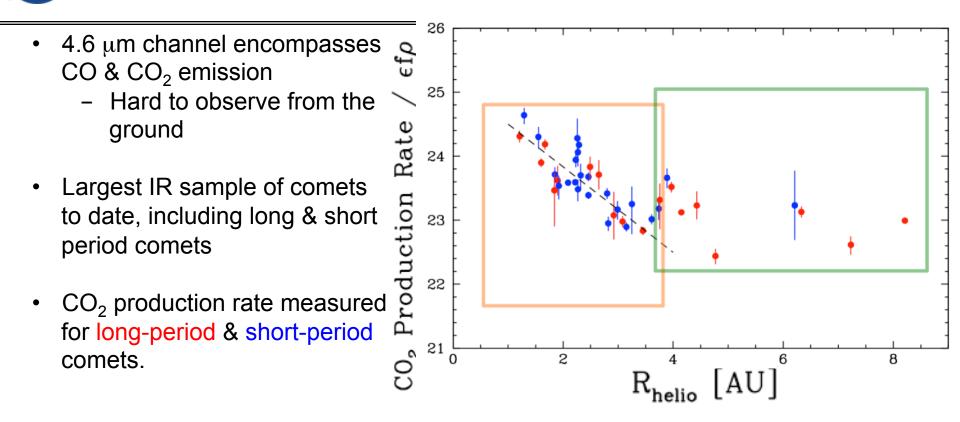
- Search by Object Name (Name resolution via JPL Horizons)
- Search using orbital elements with MPC format
- Search using manually input elements



Catalog Search Result for NEOWISE-R Year 1 Single Exposure (L1b) Source Table


-

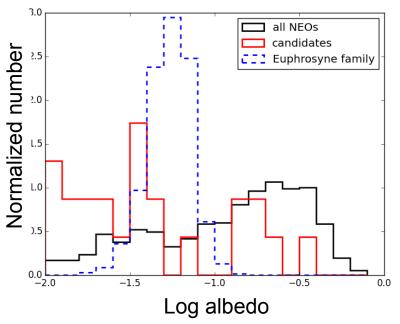
Moving Object		Observation Time			Matched	Image List		
me		Be	gin		End		B- B- %-2012	2 (2 marce - 200 (2 pressure) Condition (2 pressure) Record Regions Related Commen
lektra		2013 12 1	3 00:00:00	2014	12 14 00:00:00			httm:/iop
(MJD)		Semi-	major	E	ccentricity			-
39.00		3.12376	6383191	0.2	08587220463	1		
Perihelion (d	leg)	Ascending	Node (deg)	Mean	Anomaly (deg)		Conc.	
20738519		145.4079	82878680	317.	995810613083		4	v

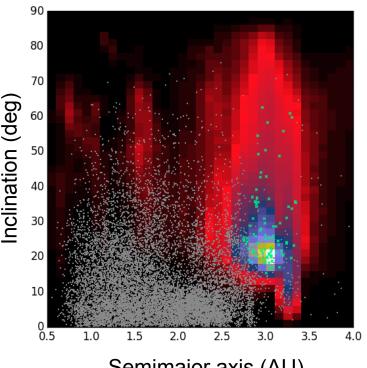


Cometary dust evolution

- NEOWISE data are particularly sensitive to large-grained dust (~mm) in cometary tails and comae.
- Kramer et al (2015): Evolution of emitted dust w/ gravitational & non-grav forces to characterize the outburst of comet C/2015 L5 (WISE) in 2010
- Automated identification of tail features (green points), lines of unique time emission and lines of constant size particles assuming continuous emission.
- Activity on C/2015 L5 is most consistent with short, strong emission event within a few days of perihelion
- Tail particle sizes: 300 μm- 1 mm.

Properties of NEOWISE-Discovered Comets


- Activity ~flat >4 AU; increases dramatically when the comets are closer to the Sun, indicating two distinct states of outgassing activity.
- Surprisingly, **no significant difference between the long- and short-period comets**, despite the common assumption that long-period comets are "fresh"!
- Bauer et al. (2015) ApJ accepted



Evolution of Euphrosyne Family Members into NEOs

- Using NEOWISE physical properties, Masiero et al. (2015) tracked the evolution of Euphrosyne family members from the Main Belt into NEO space.
- Family feeds an unusual region of the NEOs, meaning objects there have a high likelihood of having originated in this family: high inclination, dark

Semimajor axis (AU)

Probability density field (background colors) compared to all known NEOs (grey points). Known objects in the high-likelihood region are highlighted in green.

- NEOWISE is discovering & characterizing small bodies
 Diameters accurate to ±20%, albedos to ±50%
 - Over 15,700 small bodies observed since restart
- Orbital precession will eventually force an end to the mission
- All data from prime mission (2010-2011) released; all data from Restart Year 1 released
- Data access: irsa.ipac.caltech.edu