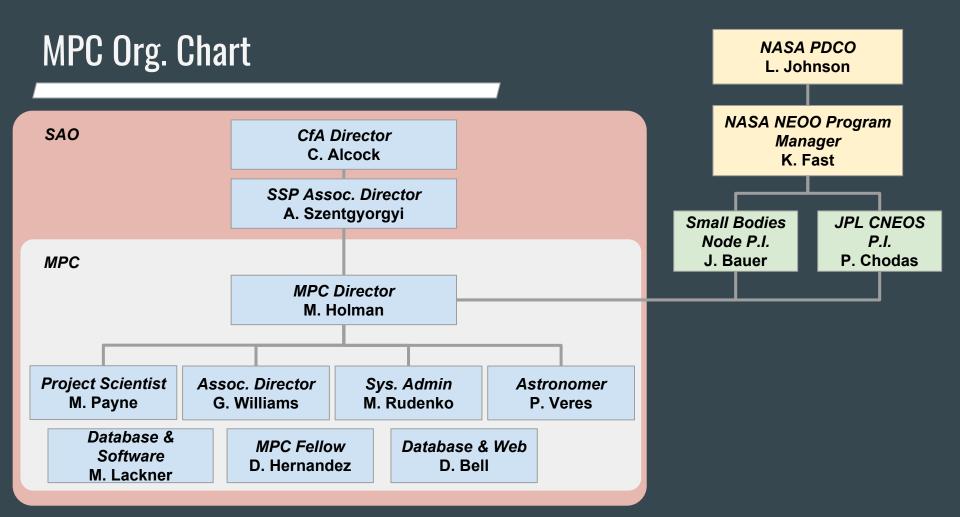
IAWN MPC Update

 $\bullet \bullet \bullet$

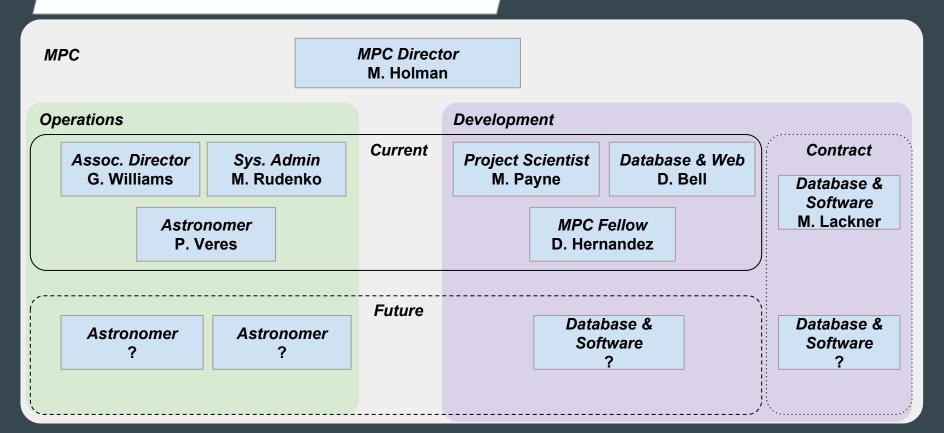
19 October 2018 Matthew Holman & Matthew Payne Harvard-Smithsonian CfA

MPC OVERVIEW

MPC Overview


- Hosted by the Smithsonian Astrophysical Observatory (SAO) at the Harvard-Smithsonian Center for Astrophysics (CfA)
- Granted authority for operation by the International Astronomical Union (IAU)
- Functional sub-node of the Small Bodies Node (SBN) of the NASA Planetary Data System
- Funded 100% by NASA since 2008, via grants through 2017. Now funded through a Cooperative Agreement via a sub-award from University of Maryland. SBN is responsible for oversight of the award.
- Funded to grow to 10 FTEs + Equipment + Travel

Roles and Responsibilities

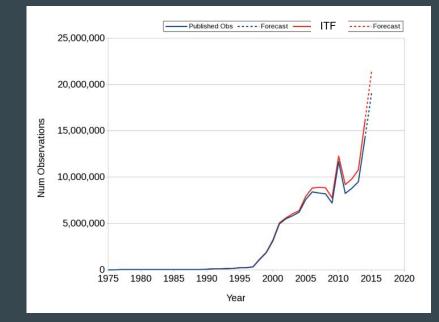

- Process ~2 millions new observations per month. The current MPC database holds ~200 million observations.
- Process observations from all vetted sources. The bulk comes from large surveys.
- Identify NEOs within a stream of observations comprised mostly of Main Belt Asteroids.
- Keep up with NEO discoveries and orbits in real time.
- Maintain the NEO Confirmation Page to facilitate coordination of NEO follow-up observations. (20-100 unique objects posted each night.)
- Warn of NEOs coming within 6 Earth-radii within 6 months. For the MPC, the time horizon is typically a few days because of discovery circumstances.
- Designate new asteroid discoveries.
- Maintain and provide access to a database of ~800,000 objects with known orbits (~500,000 are numbered, i.e. have the highest quality orbits)

Roles and Responsibilities

- Archive data with the Small Bodies Node of the NASA Planetary Data System
- Maintain digest2 tracklet classification code
- Mirror databases to the survey community
- Prepare for increased data flow from future surveys
- Interact with MPC users to support their needs
- Interact with broader public through interviews and outreach

Staffing

- Ramp up to ~10 FTE
 - Matt Holman: Director
 - Matt Payne: Project Scientist
 - Gareth Williams: Assoc. Director
 - Mike Rudenko: Sys Admin
 - Peter Veres: Astronomer-Operator
 - David Bell: DBA & Web Developer
 - David Hernandez: (MPC Fellow): Precision N-Body Development
 - Michael Lackner: Database & Software Development

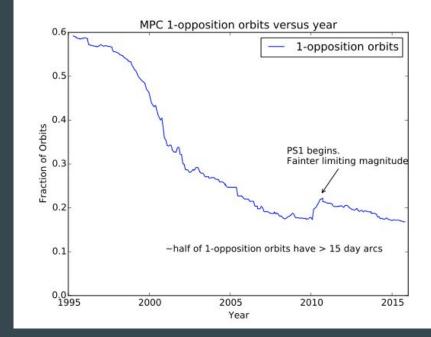

• Future hires

- Web Developer (Paresh Prema)
- Astronomer-Operator
- 2nd MPC Fellow, or another Astronomer-Operator

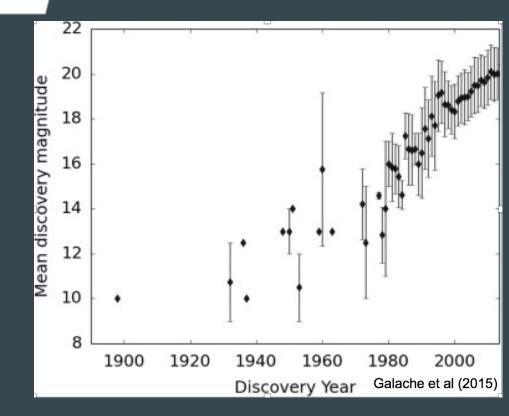
Computing Infrastructure

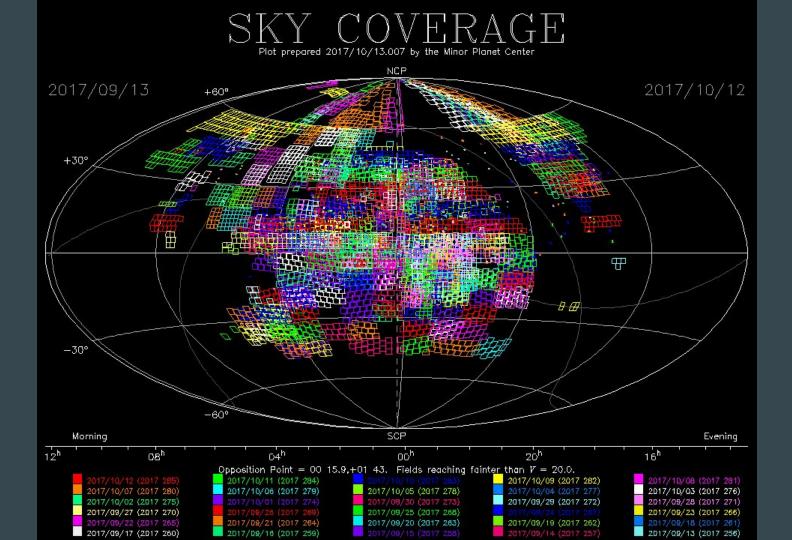
- Computing cluster deployed at SAO's Cambridge Discovery Park site.
- Similar hardware deployed at the Smithsonian's Herndon Data Center in Virginia.
- Exploring cloud computing, starting with serving static files via AWS.
- Working on moving the processes remaining on VMS machines to linux machines.
- Exploring using Harvard's Odyssey Research Computing Facility.

- Generalized survey ramp-up
 - ~68,000 observations in 1990
 - \circ ~10 million in 2007
 - \circ ~14 million in 2010
 - ~ 25 million observations per year currently
- LSST
 - First light ~2019
 - Order of Mag more data
- NEOcam
 - Extended "Phase-A" funding



- ~2M Observations / Month Currently
- ~20 200M / Month in the future
- Each observation incurs associated computational costs
 - Database Storage & Retrieval
 - Orbit extrapolation & fitting
 - Tracklet Linking
- New Pipeline must be able to bear this increased load


Operation	Observations	Orbits	Exposures
	80-200 char	80-200 char	200-500 char
Inserts	2×10^{6}	3×10^{4}	2×10^{4}
Updates	5×10^{6}	1.5×10^{5}	2×10^{4}
Selects	1.5×10^{5}	1.5×10^{5}	2×10^{4}
Scans	10 ²	10^{2}	10 ²
Deletions	101	10^{1}	10 ¹


Table 1: The estimated number of monthly MPC data system operations of each operation category for each record type.

- Pan-STARRS caused a step-change in 1-opposition orbits
- LSST will be bigger

• Evolution of Mean Discovery Magnitude

MPC Users Group

MPC Users Group

<u>Role</u>

- Guide improvements of the MPC and its processes and services for the current era, focusing primarily on the surveys and NEO follow-up operations.
- Help the MPC community get the most out of its collective resources, while meeting its main objectives.
- Best position the MPC and members of its community to cope with the increasing volume and velocity of data that will come from the expansion of current surveys.

<u>Members</u>

- Steve Chesley (JPL: Chair)
- Rob Seaman (Catalina)
- Marc Buie (SWRI)
- Richard Wainscoat (UH)
- Dave Tholen (UH)
- Carrie Nugent (Olin)

<u>Alternates</u>

- Tyler Linder
- Larry Denneau (UH)
- Davide Farnocchia (JPL)

MPC Users Group

- Two meetings per year. One at the CfA (MPC). One at a user site.
- Recent Recommendations
 - Remove any dependence on VMS machines
 - Migrate to Database-Centric Operation
 - Mitigate any single-point staffing dependencies
- Work-in-Progress
 - Significant progress toward moving key processes off VMS machines to linux machines.
 - Training of staff to manage those process, as well as automation to reduce necessary personnel time.
 - Working on improving the externally accessible database.

- Developed from 2015 meeting at SAO, led by Steve Chesley
- Many more fields possible than current obs80 format
- XML & PSV versions
- MPC is accepting ADES-format submission
 - <u>https://minorplanetcenter.net/iau/info/ADES.html</u>
 - Test functionality available
- Assigning submissionsIDs & observationIDs
- Still accepting obs80 format

The International Astronomical Union Minor Planet Center				
OBSERVERS	PUBLIC			
Processing (Info)				
ADES Data Submission				
Contents				
 Astrometry Data Exchange Standard "Valid" ADES and submissions 				
 <u>Submission procedures</u> HTTP 				
W3C schema validation				
 Enumerated field values 				
Other restrictions				
 Personally Identifiable Information 				
 <u>Additional resources at the GitHub repository</u> Problems 				

EXPOSURE INFORMATION

Exposure Information

<u>What</u>

- Report exposure information (time, RA/Dec, orientation, filter, etc.) automatically throughout the night
- Or, Report a planned exposure sequence
- Community buy-in: PS, ATLAS, Catalina, ZTF
 - All are welcome!!

<u>Why</u>

- Community coordination of NEO follow-up activities
 - NEOCP-coordination to community to see what regions of sky being observed.
- Internal MPC data pre-processing
 - The MPC can trigger calculations in advance of the observations being reported.
- Community pre-covery.
 - Facilitate re-analysis of old exposures for unreported observations

Exposure Information

<u>How</u>

• Automated submission of JSON file

<u>https://www.minorplanetcenter.net/pointings/</u>

<u>WIP</u>

- Ongoing testing of live submissions
- Expected ~Nov 1st, 2018:
 - Official announcement
 - Query API
- Expected ~ mid-Nov 2018:
 - Integration into NEOCP

<u>E.g.</u>

- For square equatorially-aligned field

```
"action": "exposed",
"surveyExpName": "AK101_Jxpf341-a",
"mode": "survey",
"mpcCode": "802",
"time": "2018-01-01 11:22:33.456",
"duration": 120,
"center": [255.167,-29.008],
"width": 2.5,
"limit": 19.5,
"filter": "r"
```

GENERALIZED MPCHECKER

Generalized MPChecker

<u>Goal</u>

• Statistically robust attribution of detections / tracklets to known orbits.

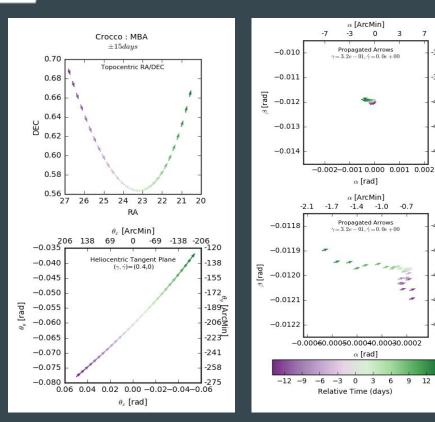
<u>Requirements</u>

- Accurate integration of orbits, incorporating multiple non-gravitational forces
- Robust generation of covariance statistics for orbital fits
- Rapid propagation of orbits (& uncertainties) to generate statistically robust uncertainty regions on the sky
- Rigorous criteria for the association of candidate detections / tracklets with propagated catalog orbits
- May 2019: Beta-versions .

Generalized MPChecker

Development Timeline

- Collaboration with LSST
- Completion by May 2019


20	18			2019			
November	December	January	February	March	April	Мау	
Common Uti	lities						
N-Body Integ	gration Schen	ne (1)					
N-Body Integ	N-Body Integration Scheme (2)						
	Robust Co-V	ariant Orbit	Fit				
	(Rapid Propa	agation of Sky	Plane Uncer	tainties		

Attribution

HELIOCENTRIC LINKING

HelioLinC: Heliocentric Linking & Clustering

- Topocentric RA & Dec
- Heliocentric RA & Dec
- Transformed θ coordinates
- **Propagated Arrows** ightarrow

0 3 7

-34

-38

-41

-45

-48

-40.6

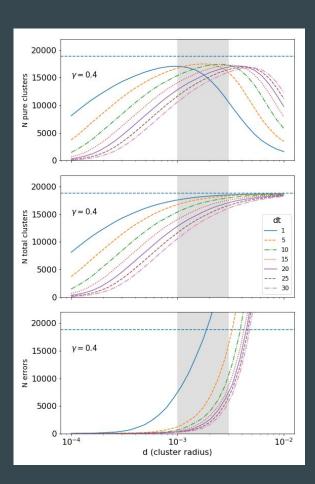
-40.9

-41.5Min]

-41.6

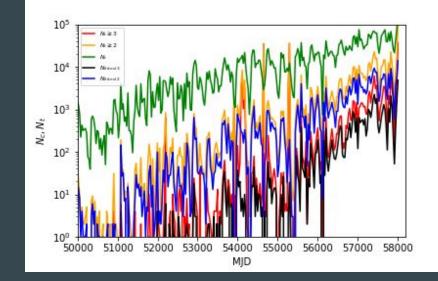
-41.9

6 9 12


[ArcMin]

HelioLinC: Heliocentric Linking & Clustering

Training Data:


The dependence of cluster identification and error rate on the tunable parameters

- Pure-Correct Clusters
- Pure+Mixed Clusters
- Erroneous Clusters

HelioLinC: Heliocentric Linking & Clustering

- The total tracklets (green)
- Number of 3+ arrow clusters prior to vetting (red)
- Number of 3+ arrow clusters after vetting (black)
 - ~41,000
- Number of 2-arrow clusters prior to vetting (orange)
- Number of 2-arrow clusters after vetting (blue)
 ~227,000
- Preliminary Independent Orbit Fitting
 - Gareth
 - > ~99% success
- Paper submitted & reviewed
 - https://arxiv.org/pdf/1805.02638.pdf
 - Have Referee's report

UNCONFIRMED NEOS

Unconfirmed NEOs

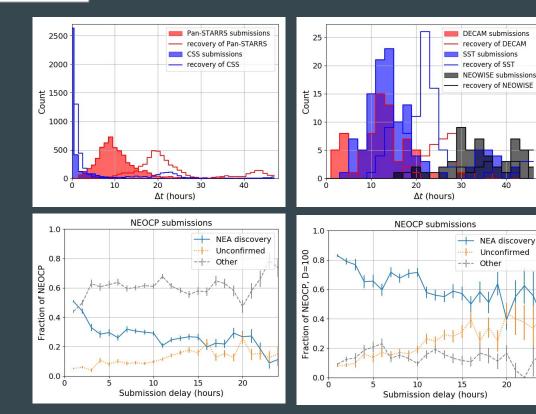
- Veres et al (2018) Accepted
- https://arxiv.org/pdf/1805.02804.pdf

-	Number		Number with
Classification		(%)	$D_2 = 100$
Initially Unconfirmed	1,909	11	915
NEA Discovery	$5,\!117$	31	3,768
NEA Attribution	708	4	492
Non-NEA (Discovery & Attribution)	8,546	50	184
Comet	231	1	67
Not a minor planet	109	1	92
Retracted	410	2	230
Summary	17,030	100	5,748
		Al	$D_2 = 100$
Initially Unconfirmed	1,90	9 915	

315

1,594

95


820

Initially-unconfirmed-but-subsequently-attributed

Currently Unconfirmed

Unconfirmed NEOs

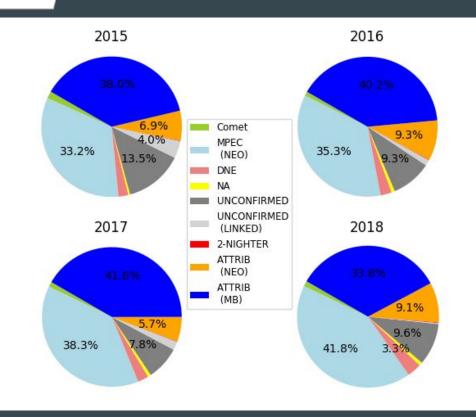
- Veres et al (2018) Accepted
- https://arxiv.org/pdf/1805.02804.pdf
- Submission and follow-up time delay of confirmed NEOCP candidates
- Large submission delay implies even \bullet larger recovery delay.
- NEO discovery rate drops and loss rate \bullet increases with increasing submission delay.

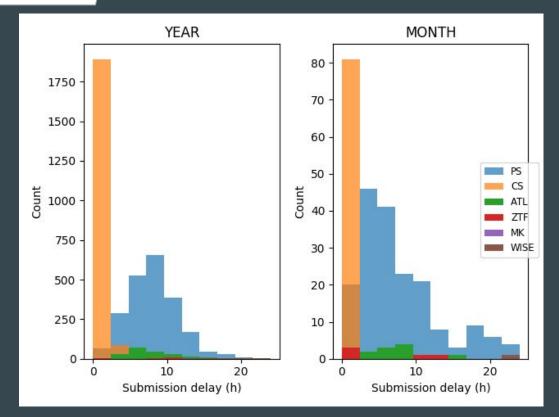
20

SUMMARY

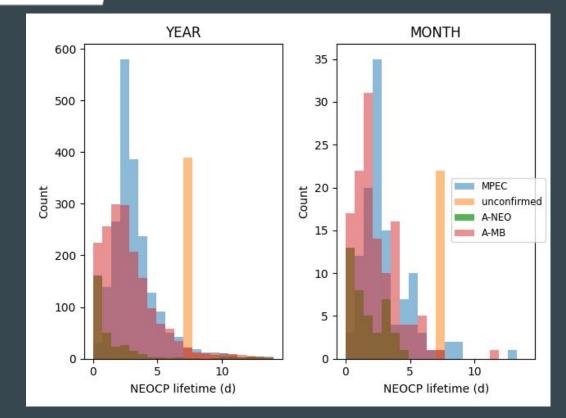
Summary

- Build-up underway
 - New staff, additional hires underway
 - New Software and hardware
- Drivers of Data Growth (LSST, NEOCam)
 - Order of mag increase
 - Shapes efficiency requirements
- Community feedback from MUG
- Development:
 - ADES
 - Exposure / Pointings
 - MPChecker
 - Heliocentric Linking
- Unconfirmed NEOs




Survey & Follow-Up igodolOverall Data Volumes by Orbit Category *≪ Easv* Ο Tracking Improvement and Progress igodol• Overall Inventory *≪* Easy *«* Mixed Key Time Intervals 0 **NEOCP-Specific** Key Time Intervals *« Mixed* 0 Routine, Non-Validated, Non-NEOCP Objects ITF Linkages by destination category *« Difficult* Ο **Improvements / Additions** Ο

Anything "Mixed" or "Difficult" requires improvements to Db / Tracking


- NEO Submissions
- Fate of tracklets
- WIP:
 - <u>https://www.cfa.harvard.</u>
 <u>edu/~pveres/index1.html</u>

- NEO Submissions
- Submission delay for tracklets
- WIP:
 - <u>https://www.cfa.harvard.</u> edu/~pveres/index1.html

- NEO Submissions
- Time on NEOCP for tracklets
- WIP:
 - <u>https://www.cfa.harvard.</u>
 <u>edu/~pveres/index1.html</u>

Anticipating the future

- How will the MPC receive from future surveys like LSST?
- Will the MPC do the linking for LSST and NEOCam, or will those surveys report linked tracklets?
 - What science is lost if they only report links (sparse coverage, etc)?
- Can the MPC cope with a higher rate of false positives if the surveys report data of which they are less confident?
- What changes are needed to the MPC data operations to support detection and linking efficiency calculations for surveys, with the MPC being a shared component of other data pipelines?
- Will targeted follow-up be needed or feasible?
- Should the NEOCP follow-up model be replaced with something else?